2012 Lower American River
Streambank Erosion Monitoring Report

December 2012

Prepared for:
American River Flood Control District
&
Sacramento Area Flood Control Agency

Prepared by
MBK Engineers
1771 Tribute Road, Suite A
Sacramento, CA 95815
916/456-4400
916/456-0253 (fax)
Table of Contents

Background ... 1

Purpose ... 1

Flow History for the 2011-2012 Flood Season ... 2

Process .. 2

- Site Visit ... 2
- Review of 2-D Hydraulic Modeling ... 3
- LAR RM 0 to 6 .. 3
- LAR RM 6 to 11 .. 4
- LAR RM 11 to 14 ... 4
- Sacramento River RM 60.0 to 60.5 .. 4

Conclusions .. 5

- LAR RM 10.9 Left ... 5
- LAR RM 10.8 Right .. 5
- LAR RM 10.5 Left .. 5
- LAR RM 9.8 Left .. 6
- LAR RM 8.8 Right .. 6
- LAR RM 7.5 Right .. 6
- LAR RM 2.7 Left .. 6
- Sacramento River RM 60.3 Left .. 7
- Sacramento River RM 60.1 Left .. 7

Recommendations .. 7

Prepared under the direction of:

Nathan J. Hershey, P.E.

Brian Janowiak, P.E.
List of Tables

Table 1 Lower American River Modeled Velocity Summary ... 3
Table 2 Suggested Maximum Channel Water Velocities ... 4
Table 3 Lower American River Erosion Monitoring
 Erosion Sites Identified as a Concern .. 8

List of Figures

Figure 1 2012 LAR Bank Erosion Survey Monitoring Sites Area Map
Figure 2 Mean Daily Flows on the American River
Figure 3 Lower American River – RM 2.7 160,000 cfs Inundation Boundary

Appendices

Appendix A Photos
Appendix B Velocity Contours
Background

In leved sections of river, channel migration and erosion can create problems to flood control officials and parkway managers. Due to the river’s erosive forces, the structural integrity of levees and loss of parkway space is threatened. If not monitored and controlled properly, bank erosion has the potential to migrate into the structural section of a levee and become a major hazard to the levee system during a high flow event. As the erosion encroaches in the structural section, it could result in failure of the levee due to structural instability. In addition, loss of levee section could accelerate seepage through the levee to the point where levee failure due to piping could occur.

In order to observe changes indicative of active erosion and a possible problem while the problem is in its infancy, rather than when the structural section of the levee is affected, a prudent levee maintenance program includes annual monitoring of existing bank erosion. As problems are identified, solutions can be developed in a collaborative fashion to allow the input of interested parties in levee protection. Most reaches of the American River levee system include a waterside bench that serves as a buffer between the levee section and the active river channel. This bench also provides habitat and recreation opportunities. One of the tools used to evaluate erosion potential can include hydraulic models to estimate flow velocities and determine potential erosion areas.

One of the objectives of this erosion monitoring report is to supplement American River Flood Control District’s (ARFCD) operation and maintenance plan to address erosion to ensure that the levees meet 44 CFR 65.10, paragraph (d) requirements for maintenance of certified levees. This section states:

“Maintenance plans and criteria. For levee systems to be recognized as providing protection from the base flood, the maintenance criteria must be as described herein. Levee systems must be maintained in accordance with an officially adopted maintenance plan, and a copy of this plan must be provided to FEMA by the owner of the levee system when recognition is being sought or when the plan for a previously recognized system is revised in any manner. All maintenance activities must be under the jurisdiction of a Federal or State agency, agency created by Federal or State law, or an agency of a community participating in the NFRP that must assume ultimate responsibility for maintenance. This plan must document the formal procedures that: ensure that the stability, height, and overall integrity of the levee and its associated structures and systems are maintained. At a minimum, maintenance plans shall specify the maintenance activities to be performed, the frequency of their performance, and the person by name or title responsible for their performance.”

Purpose

The scope of this effort is to inspect the Lower American River (LAR) Federal Project levees which are operated and maintained by ARFCD and are susceptible to damage due to streambank erosion. The scope does not include the LAR right bank levee downstream of the Natomas East...
Main Drainage Canal, as this levee is maintained by RD 1000. ARFCD inspects the actual levees for stability, seepage, encroachments, and erosion. The scope of this effort includes inspection of the top of the berm and levee face if the previous flood season had flood stages above the berm. In water year 2011/2012 (October 2011 – September 2012), flows along the American River were not high enough to put water on the levees. The geographic limits of the inspection are from LAR River Mile (RM) 12.0 to the confluence of the LAR and the Sacramento River as well as the Sacramento River left bank from RM 60.5 to 60.0. The Federal Project levee extends upstream of LAR RM 12.0 on the right bank to approximately RM 14.0, but is located away from the low flow channel and is not threatened by streambank erosion. In addition, the levee along the right bank between RM 2.0 and RM 5.3 is a significant distance from the low flow channel (approximately 1800 lineal feet). Erosion in the low flow channel poses no threat to the levee in this reach.

The findings contained in this report are the result of visual inspection of the levees and review of two-dimensional hydraulic modeling results. This report is the eighth annual inspection report. The 2011 report serves as the baseline for this evaluation. Figure 1 shows the extent of the inspection and those areas not inspected.

Flow History for the 2011-2012 Flood Season

Figure 2 shows the mean daily flows for the American River from October 6, 2011 through October 23, 2012 (the date of inspection). The maximum peak flow since the previous inspection date (October 5, 2011) was 8,110 cfs, occurring May 1-3, 2011. The peak flow of 8,110 cfs is significantly lower than the previous inspection year’s peak flow of 30,900 cfs, occurring December 16, 2010.

Process

Site Visit

The LAR Inspection Team conducted a site inspection by boat on October 23, 2012. The inspection team consisted of Tim Kerr (ARFCD), Richard Marchk, (ARFCD), KC Sorgen (SAFCA), Mary Maret (Sacramento County Parks), Brian Janowiak (MBK Engineers), Matt Bachman (MBK Engineers), and Jake Benton (MBK Engineers). The monitoring process included both visual observations of the water side banks along the American River downstream of RM 12 and the Sacramento River left bank from RM 60.5L to 60.0L, as well as a review of two-dimensional hydraulic modeling results. During the inspection, the team stopped at the accessible sites to take a closer look at the existing conditions. The flow in the river on the date of inspection was approximately 1,720 cfs.

The results of the field review are summarized in Table 3. Photo documentation of the site visit is attached as Appendix A. The purpose of the field visit was to locate areas where erosion is visible due to loss of vegetation, apparent unstable bank lines, bare unconsolidated soil, and/or human activity. The boat survey began at approximately RM 12.0 (Grismill Park) and
proceeded downstream to the confluence with the Sacramento River. Due to the relatively low flows in the river, drift boats were used for the inspection. An inflatable boat powered by a small outboard motor was used to inspect sites that required upstream navigation. These sites included RM 10.8R on the American River, as well as RM 60.3L and RM 60.1L on the Sacramento River. No new erosion sites were identified during the inspection. The locations of the sites inspected are shown on Figure 1.

Review of 2-D Hydraulic Modeling

The second task in the process was to review two-dimensional hydraulic analyses at flows of 115,000 cfs and 145,000 cfs. One hundred fifteen thousand (115,000) cfs is the objective release from Folsom Dam and 145,000 cfs is the FEMA “Base Flood” flow (1/100 Annual Exceedence Probability flood event). The "Lower American River, Erosion Susceptibility Analysis for Infrequent Flood Events" (Ayres, July 9, 2004) was reviewed to identify additional reaches that may be of concern that were not obvious during the site visit. The 115,000 cfs and 145,000 cfs velocity contour plates are included as Appendix B. Velocities at the sites observed during the site visit are shown in Table 3.

Velocity information from the 2-D model has been evaluated for the following reaches that were defined by floodway width to evaluate the potential for systemic erosion problems. The following table provides a summary of the modeled velocities for each reach.

Table 1 – Lower American River Modeled Velocity Summary

<table>
<thead>
<tr>
<th>Reach</th>
<th>Flow = 115,000 cfs</th>
<th>Flow = 145,000 cfs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Velocity (Main Channel)</td>
<td>Velocity (Streambank)</td>
</tr>
<tr>
<td>LAR RM 0 to 6</td>
<td>5-8 fps</td>
<td>1-5 fps</td>
</tr>
<tr>
<td>LAR RM 6 to 11</td>
<td>6-10 fps</td>
<td>2-6 fps</td>
</tr>
<tr>
<td>LAR RM 11 to 14</td>
<td>5-7.5 fps</td>
<td>3-5 fps</td>
</tr>
</tbody>
</table>

LAR RM 0 to RM 6

The reach downstream of LAR RM 6 is generally characterized by a wide berm on the right bank and a narrow or no berm on the left bank. As discussed above, erosion in the active river channel is not a threat to the right bank levee between RM 2.0 and RM 5.3. For a flow of 115,000 cfs, velocities are generally 5-8 fps in the main channel, 1-5 fps at the streambanks, and 1-4 fps at the levee. Velocities on the left bank for a flow of 115,000 cfs tend to be greater than bare soil or vegetation can handle without experiencing erosion. The following table summarizes suggested maximum permissible mean channel velocities.
Table 2 – Suggested Maximum Channel Water Velocities

<table>
<thead>
<tr>
<th>Channel Material</th>
<th>Mean Channel Velocity (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine Sand</td>
<td>2</td>
</tr>
<tr>
<td>Course Sand</td>
<td>4</td>
</tr>
<tr>
<td>Sandy Silt</td>
<td>2</td>
</tr>
<tr>
<td>Silt Clay</td>
<td>3.5</td>
</tr>
<tr>
<td>Clay</td>
<td>6</td>
</tr>
<tr>
<td>Soils with good vegetative cover</td>
<td>6-7</td>
</tr>
<tr>
<td>Poor rock (usually sedimentary)</td>
<td>10</td>
</tr>
<tr>
<td>Good rock (usually igneous or hard metamorphic)</td>
<td>20</td>
</tr>
</tbody>
</table>

Velocities above these ranges for the identified material would be expected to result in erosion. For a flow of 145,000 cfs, velocities are 7.5-9 fps in the main channel, 4-7.5 fps at the streambanks, and 1-5 fps at the levee. Most of the left bank in this reach has been revetted, portions of which are non-engineered and may sustain damage during high flow events.

LAR RM 6 to RM 11

This reach has a narrow floodway when compared to the up and downstream reaches. For a flow of 115,000 cfs, velocities are 6-10 fps in the main channel, 4-6 fps at the streambanks, and 1-6 fps at the levee. For a flow of 145,000 cfs, velocities are 7.5-12 fps in the main channel, 5-7.5 fps at the streambanks, and 1-7 fps at the levee. The rate of streambank erosion could be slowed by maintaining a dense cover of vegetation along the streambank. However, erosion will be an ongoing problem in this reach due to the high velocities and will eventually require structural measures. If vegetation is added to this reach, hydraulic modeling should be conducted to analyze the potential impact on water surface elevations.

LAR RM 11 to RM 14

This reach has a wide floodplain and the levees are relatively small and located away from the main channel. For a flow of 115,000 cfs, velocities are 5-7.5 fps in the main channel, 3-5 fps at the streambanks, and 1-5 fps at the levee. For a flow of 145,000 cfs, velocities are 5-8 fps in the main channel, 3-5 fps at the streambanks, and 1-6 fps at the levee. The 2-D model upstream boundary is approximately RM 14.

Sacramento River RM 60.0 to RM 60.5

This reach has a wide river channel with a floodplain on the right bank. The left bank levee is maintained by ARFC and transitions to the streambank with little to no berm. Velocities along

3 Modified from U.S. Army Corps of Engineers EM 1110-2-1601, page 2-16.
the left bank levee are generally less than 3 fps (with the Sacramento Weir open). The 2-D model downstream boundary is RM 59.4.

Conclusions

The site inspection observed nine sites (Table 3) that are actively eroding or show signs of past erosion within the jurisdiction of the ARFCD. Three of these nine sites, RM 10.5L (downstream portion of site), RM 9.8L (upstream portion of the site), and RM 2.7L have been either partially or fully repaired. One of these sites, Sacramento River RM 60.1L, has been fully repaired by the District. Discussion of site specific details involving the repairs for the individual sites is summarized below. Based on visual observations during the inspection, it appears that erosion has not advanced into the 3:1 waterside levee cross section. All sites will be continually monitored by ARFCD. Other parkway interests can use this information to decide if there are partnering opportunities to address erosion at an early stage to prevent the risk of erosion progressing into the standard levee section and preserving limited parkway lands. Additional potential erosion sites were not identified as a result of the review of the 2-D hydraulic model results at a flow of 115,000 cfs or 145,000 cfs.

The following is a summary of the sites and a description of potential actions that could be taken:

LAR RM 10.9 Left – Erosion at this site does not threaten the integrity of the levee due to the width of the berm. Planting woody vegetation on the bank would reduce the rate of erosion. However, recreational use at the site may dictate a more structural fix. Recreational use at the site has degraded portions of the bank since the 2011 inspection. Minor erosion was noted in 2010 in a confined area along the channel bank, likely due to animal activity and surface drainage. This erosion does not appear to have progressed significantly. Cross section surveys are an option that would enable the district to monitor the progression of the erosion at this site.

LAR RM 10.8 Right – Erosion at this site does not threaten the integrity of the levee due to the width of the berm. Planting woody vegetation on the bank would reduce the rate of erosion. However, recreational use at the site may dictate a more structural fix. Erosion at this site does not appear to have progressed since the 2011 inspection based on visual observations.

LAR RM 10.5 Left – Erosion at this site does not appear to threaten the integrity of the levee due to the width of the berm. However, the soils at the site appear to be non-cohesive soils that would likely erode rapidly during a high water event, especially if the vegetative cover continues to degrade due to high recreational use. Planting woody vegetation on the bank would reduce the rate of erosion. Recreational use at the site may dictate a more structural fix. The upstream portion of the site has slightly degraded since the 2011 inspection. The undercut bank does not appear to have progressed since 2011. However, if erosion continues to progress at the site, a more structural fix will be required. Repair of the site will need to accommodate intense recreational use.

The downstream portion of the site has been repaired by the US Army Corps of Engineers as part of the Sacramento River Bank Protection Program. Repairs included placing riprap along the bank as well as planting vegetation.
LAB RM 9.8 Left – This site has been repaired by the US Army Corps of Engineers as part of the Sacramento River Bank Protection Program. Construction activities included repairing the eroded sections of the site by placing riprap along the bank as well as planting vegetation. The upstream portion of the site ties in with the previously repaired downstream portion of the site.

The west end of this site (downstream, formerly known as Site 10.0L.) was previously repaired and woody vegetation was planted on the waterside edge of the berm. This planting appears to have reduced the rate of erosion as it has not progressed significantly since 2011. Observations indicate the cobble and the finer particles on the surface of the berm have eroded, exposing some of the underlying riprap. This appears to be the result from primarily pedestrian and recreational activity. However, this condition is largely aesthetic and the structural component appears to be intact. The repair appears to be holding up relatively well, however it is highly correlated to the amount of pedestrian use at the site. The District has performed minor maintenance in the area to stabilize the pedestrian path.

LAB RM 8.8 Right – This site was previously studied by the Sacramento River Bank Protection Project as the “Site 5 extension” (Lower American River – Site 5 Extension, US Army Corps of Engineers, prepared by HDR, March 2002). Consideration should be given to repairing the scalloping at this site to reduce the rate of erosion. Consideration should also be given to taking action over the entire reach to preserve the berm, equestrian trail, and existing mature vegetation. No visible progression of erosion was observed, and it should be noted that the vegetation cover appears to be similar to the 2011 inspection.

LAB RM 7.5 Right – Erosion at this site does not threaten the integrity of the levee due to the width of the berm. Planting woody vegetation on the bank may reduce the rate of erosion and should be considered. The width of the berm is substantial (greater than 100 feet) at this site. However, the apparent erodability of the exposed soils could lead to significant erosion during a high flow event, although it is not anticipated to erode the entire berm in one flood event. Armoring the bank with biotechnical measures such as brush mattress, willow waffles or brush boxes (all supplemented with plantings) should be considered to preserve the berm and bike trail. Erosion at this site does not appear to have progressed since the 2011 inspection. Vegetative cover appears to be similar to 2011. Less exposed soil was observed at the site than in recent years.

LAB RM 2.7 Left – This site has been partially repaired by the Army Corps of Engineers under the Sacramento River Bank Protection Program. As previously noted, it was observed that the repair efforts do not appear to encompass the entire area experiencing erosion, specifically the upstream portion of the site. Erosion at the upstream end of the site threatens the integrity of the floodwall because the streambank is steeper than 3:1. This floodwall has been previously studied by MBK (Alternatives Analysis for Replacement of the Existing Floodwall at Lower American River, River Mile 2.7, March 2007). This report concluded that a failure of the wall at or below flows of 150,000 cfs would lead to localized flooding, as shown in Figure 3, because flooding would be contained by high ground that surrounds the wall. However, so long as this floodwall is an element of the Sacramento River Flood Control Project, the integrity of the floodwall should be maintained. This site does not appear to represent an immediate threat to public safety because of high ground located behind the levee and floodwall; however, a more
detailed site analysis could be performed to determine if corrective action is required.

Sacramento River RM 60.3 Left – Recreational use is frequent at this site, contributing to the degradation of the embankment. Fill with vegetation on the upper bank is a possible solution to stabilize the bank. This site does not appear to represent an immediate threat to the levee based on the low velocities that characterize the reach; however, a more detailed site analysis could reveal that corrective action is required. The District has performed minor maintenance in the area to address erosion at the top of the slope. Two trees along the bank have fallen over since the 2011 inspection. This site should continue to be monitored and maintained.

Sacramento River RM 60.1 Left – This site was repaired in October 2011. The site repair included a riprap bench established at the waterline to protect the bank from wind generated waves and boat wakes. Fill material was placed above the riprap to repair the eroded embankment. The site was hydroseded in an effort to minimize future erosion. The repair appears to be holding up well and no further repairs are necessary at this time.

Recommendations

It is recommended that the District continue to monitor the sites identified in Table 3. As site specific changes in conditions are observed, they should be documented and reported for further investigation. Inspections should continue to be performed after high water events and on an as-needed basis.
<table>
<thead>
<tr>
<th>Site</th>
<th>Length</th>
<th>Year Identified</th>
<th>Conditions</th>
<th>Modeled Velocity</th>
<th>Modeled Velocity</th>
<th>Recreational Setting</th>
<th>Potential Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Mile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.8L</td>
<td>150 feet</td>
<td>2005</td>
<td>Poorly vegetated bank with 280 feet from channel to levee. Some minor erosion was first noted in 2010 in a confined area along the channel bank, likely a combination of animal activity and surface drainage. This erosion does not appear to have progressed significantly over the past two years. Little change observed since 2011 at the remainder of the site.</td>
<td>1-3 fps</td>
<td>3-4 fps</td>
<td>Self-maintained walking trails at top of bank.</td>
<td>Establish woody vegetation thicket on bank or other biotechnical measures such as brush mattress, willow waddles or brush boxes (all supplemented with plantings), especially along waterside toe.</td>
</tr>
<tr>
<td>10.8R</td>
<td>120 feet</td>
<td>2005</td>
<td>No visible progression of erosion from 2011 based on field inspection. Poorly vegetated, undercut bank with 175-foot berm to levee. Signs of recreational use are apparent at the site.</td>
<td>1-3 fps</td>
<td>1-3 fps</td>
<td>50 feet to Equestrian Trail and 85 feet to Bike Trail.</td>
<td>Establish woody vegetation thicket on bank or other biotechnical measures such as brush mattress, willow waddles or brush boxes (all supplemented with plantings), especially along waterside toe.</td>
</tr>
<tr>
<td>10.5L</td>
<td>150 feet</td>
<td>2006</td>
<td>Poorly vegetated bank with non-cohesive soils and heavy recreational use. Upstream portion of site has slightly degraded since 2011 inspection. Downstream reach has been repaired by the Army Corps of Engineers under the Sacramento River Bank Protection Program.</td>
<td>1-95003 fps</td>
<td>2-4 fps</td>
<td>Adjacent to Equestrian Trail and foot path.</td>
<td>Repair of the site will need to integrate recreational use. Due to the challenges with repairs at RM 10.0 (see 2006 report), vegetation is not likely to be successful due to the intense recreational use. Cobble with vegetation or other biotechnical measures such as brush mattress, willow waddles or brush boxes (all supplemented with plantings) are a possible solution. The downstream reach has been repaired as part of the Sacramento River Bank Protection Project, also known as the Sac Bank Program.</td>
</tr>
<tr>
<td>9.8L</td>
<td>1150 feet</td>
<td>2005</td>
<td>Erosion has historically occurred due to high pedestrian access / recreational use, however it does not appear to have progressed significantly since 2011. The upstream reach has been repaired by the Army Corps of Engineers under the Sacramento River Bank Protection Program.</td>
<td>4-6 fps</td>
<td>5-7 fps</td>
<td>65 feet to levee maintenance road.</td>
<td>The upstream reach has been repaired as part of the Sacramento River Bank Protection Project, also known as the Sac Bank Program. The downstream reach was previously repaired and appears to be holding up relatively well.</td>
</tr>
<tr>
<td>8.8R</td>
<td>280 feet</td>
<td>2005</td>
<td>Undercut, vertical bank sloughing into river, 100 foot berm to levee. Vegetative cover is similar to 2011.</td>
<td>3-5 fps</td>
<td>4-6 fps</td>
<td>Adjacent to Equestrian Trail; 60 feet to Bike Trail.</td>
<td>Armor bank at and below low flow shoreline with rock and treat upper bank with biotechnical measures such as brush mattress, willow waddles or brush boxes (all supplemented with plantings).</td>
</tr>
<tr>
<td>7.5R</td>
<td>820 feet</td>
<td>2005</td>
<td>No visible progression of erosion compared to 2011 field inspection. Undercut, vertical bank sloughing into river, 150 foot berm to levee. Vegetative cover is similar to 2011. Less exposed soil was observed at the site than in recent years.</td>
<td>3-6 fps</td>
<td>5-6 fps</td>
<td>40 feet to Equestrian Trail; 80 feet to Bike Trail.</td>
<td>Restore slope and armor bank.</td>
</tr>
<tr>
<td>2.7L</td>
<td>700 feet</td>
<td>2006</td>
<td>Site has been partially repaired by the Army Corps of Engineers under the Sacramento River Bank Protection Program. Repair efforts do not appear to encompass all areas experiencing erosion, specifically the upstream end of the site.</td>
<td>1-3 fps</td>
<td>2-4 fps</td>
<td>Private property, limited public access.</td>
<td>Extend the repair efforts further upstream to include the erosion near the existing flood wall (approximately 250 feet).</td>
</tr>
<tr>
<td>Sac River 60.3L</td>
<td>330 feet</td>
<td>2006</td>
<td>Site is north of the old water intake facility. Steambank above waterline is oversteepened with poorly vegetated bank and non-cohesive soils. Erosion historically has migrated toward the access road on the bench. The District has performed minor maintenance in the area to address erosion at the top of the slope. Two trees have fallen over since 2011.</td>
<td>>3 fps</td>
<td>>3 fps</td>
<td>Bike trail at top of bank. High recreational use.</td>
<td>Fill with vegetation or biotechnical measures such as brush mattress, willow waddles or brush boxes (all supplemented with plantings). Site should continue to be monitored and maintained.</td>
</tr>
<tr>
<td>Sac River 60.1L</td>
<td>100 feet</td>
<td>2006</td>
<td>Site is between the old water intake facility and the new intake facility. Site was repaired in October 2011. Repaired levee appears to be in good condition.</td>
<td>>3 fps</td>
<td>>3 fps</td>
<td>Bike trail at top of bank. High recreational use.</td>
<td>In October 2011, a riprap bench was established at the waterline to protect the bank from wind generated waves and boat wakes. Fill material was placed above the riprap to repair the eroded embankment. The site was hydroseded in an effort to minimize future erosion. Repair efforts have been successful and levee appears to be in good condition.</td>
</tr>
</tbody>
</table>
Excluded from the Scope of this Report 2011-2012 Flood Season Flows did not Exceed Berm Elevation

Legend
- Erosion Site
- Inspected Levee
- Un-Inspected Levee

Lower American River 2012 Bank Erosion Survey
Figure 2 - Mean Daily Flows on the American River

Source: USGS Gage (American River at Fair Oaks, Provisional Data).
Appendix A
Photos
Photograph 13 - LAR KM 2.7/1 (1), upstream of repair site

Photograph 14 - LAR KM 2.7/1 (2), repair site
Appendix B
Velocity Contours
Applied Velocity Plots
115,000 cfs
Lower American River - Velocity Contours
115,000 cfs
Lower American River - Velocity Contours
115,000 cfs

PLATE 4
Lower American River - Velocity Contours
115,000 cfs
Lower American River - Velocity Contours
115,000 cfs
Applied Velocity Plots
145,000 cfs
Lower American River - Velocity Contours
145,000 cfs